metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Takashiro Akitsu* and Yasuaki Einaga

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: akitsu@chem.keio.ac.jp

Key indicators

Single-crystal X-ray study T = 297 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.047 wR factor = 0.152 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-Bis(5,5-diphenylhydantoinato)bis-(2-phenylethylamine)copper(II)

The title compound, $[Cu(C_{15}H_{11}N_2O_2)_2(C_8H_{11}N)_2]$, has its metal atom in a square-planar *trans*-CuN₄ coordination environment; the Cu^{II} atom lies on a center of symmetry. The 5,5-diphenylhydantoinate and 2-phenylethylamine ligands behave as monodentate ligands and bind through their N atoms. The crystal structure is stabilized by N–H···O=C intermolecular hydrogen bonds [N···O = 2.864 (3) Å].

Comment

We are investigating thermochromic compounds in a broad study on photofunctional materials (Sato, 2003). An example of a class of such materials is the class of tetrachlorocuprate(II) complexes, which are also photochromic. The property is related to a change from a square planar to a distorted tetrahedral geometry (Riley *et al.*, 1998). Copper(II) complexes with *N*-substituted ethylenediamines also exhibit thermochromism (Narayanan & Bhadbhade, 1998) and photochromism (Takahashi *et al.*, 2002). The electronic states of (distorted) square-planar CuN₄ chromophores have been satisfactorily assigned for the amine complexes of copper 5,5diphenylhydantoinate (Akitsu, Komorita & Urushiyama, 2001). The present study details the structure of the 2phenylethylamine complex, (I).

In (I) (Fig. 1), the Cu atom exists in a square-planar CuN₄ coordination geometry; it lies on an inversion center. The 2-phenylethylamine and 5,5-diphenylhydantoinate groups function as monodentate ligands. Similar complexes commonly adopt a square-planar coordination geometry (Akitsu, Komorita & Kushi, 2001; Akitsu *et al.*, 2003). The five-membered ring of the 5,5-diphenylhydantoinate group is planar, and the carbonyl O atoms lie in the plane. The C1–N1–C2 angle of 108.7 (2)° indicates the sp^2 character of the deprotonated N1 atom; the O1–C1–N1 and O2–C2–N1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 15 March 2004 Accepted 29 March 2004 Online 9 April 2004

 $D_r = 1.330 \text{ Mg m}^{-3}$ Mo K α radiation

 $\theta = 10.4 - 13.0^{\circ}$

 $R_{\rm int} = 0.034$ $\theta_{\max} = 27.5^{\circ}$ $h = -14 \rightarrow 14$

 $k = 0 \rightarrow 24$

 $l = -12 \rightarrow 5$

3 standard reflections

every 150 reflections

intensity decay: 3.3%

 $\mu = 0.59 \text{ mm}^{-1}$ T = 297 (1) KPrism, red-violet $0.70 \times 0.50 \times 0.30 \ \mathrm{mm}$

Cell parameters from 25 reflections

Figure 1

The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) 1 - x, 1 - y, 1 - z].

Figure 2

A molecular packing diagram of (I), viewed down the crystallographic a axis. Dashed lines represent hydrogen bonds.

angles of 124.9 (3) and 126.2 (3) $^{\circ}$, respectively, also reflect electron delocalization in the π -conjugated system. Intramolecular hydrogen bonds (Table 2) serve to stabilize the squareplanar geometry. Adjacent molecules are linked by intermolecular hydrogen bonds along the crystallographic b axis (Fig. 2). Such a hydrogen-bonding pattern is also found in the above-mentioned related complexes.

Experimental

The reaction of copper(II) acetate (0.454 g, 2.50 mmol), 5,5-diphenylhydantoin (1.26 g, 5.00 mmol) and 2-phenylethylamine (0.606 g, 5.00 mmol) in ethanol (100 ml) at 323 K for 1 h gave a red-

Crystal data

$[Cu(C_{15}H_{11}N_2O_2)_2(C_8H_{11}N)_2]$
$M_r = 808.42$
Monoclinic, $P2_1/c$
a = 11.050 (9) Å
b = 18.502 (10) Å
c = 9.916(5) Å
$\beta = 95.08 \ (5)^{\circ}$
V = 2019 (2) Å ³
Z = 2

Data collection

Rigaku AFC-7R diffractometer ω –2 θ scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.708, \ T_{\max} = 0.837$ 5357 measured reflections 4643 independent reflections 4635 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0561P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 2.676P]
$wR(F^2) = 0.152$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
4635 reflections	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
259 parameters	$\Delta \rho_{\rm min} = -0.94 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	1.979 (2)	Cu1-N3	2.026 (3)
N1-Cu1-N3	91.4 (1)	Cu1-N3-C16	118.3 (3)
N1-Cu1-N3 ⁱ	88.6 (1)		()

metry code: (i) 1 - x, 1

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H13···O2	0.95	2.24	2.901 (4)	126
$N3-H12\cdots O1^{i}$	0.95	2.15	2.872 (3)	132
$N2-H1\cdots O1^{ii}$	0.95	1.92	2.864 (3)	172
Symmetry codes: (i)	$1 - x \cdot 1 - y \cdot 1 - y$	1.92	-v.2 - z.	172

Initial measurements on smaller crystals were not successful, owing to weak diffraction, and a somewhat large crystal was then used in the measurements. All H atoms were placed in calculated positions, with C-H and N-H = 0.95 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) =$ $1.2U_{eq}$ (parent atom).

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SIR92 (Altomare et

al., 1994); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *TEXSAN*.

This work was supported by Grant-in-Aid for the 21st Century COE program 'KEIO Life Conjugate Chemistry' from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

- Akitsu, T., Komorita, S. & Kushi, Y. (2001). Inorg. Chim. Acta, 315, 18-25.
- Akitsu, T., Komorita, S. & Tamura, H. (2003). Inorg. Chim. Acta. 348, 25-32.
- Akitsu, T., Komorita, S. & Urushiyama, A. (2001). Bull. Chem. Soc. Jpn, 74, 851–860.

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (2001). *TEXSAN*. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
- Narayanan, B. & Bhadbhade, M. M. (1998). J. Coord. Chem. 46, 1115-123.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Ctyst. A25, 351–359.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo Japan.
- Riley, M. J., Neill, D., Bernhardt, P. V., Byriel, K. A. & Kennard, C. H. L. (1998). Inorg. Chem. 37, 3635–3639.
- Sato, O. (2003). Acc. Chem. Res. 36, 692-700.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Takahashi, K., Nakajima, R., Gu, Z.-Z., Yoshiki, H., Fujishima, A. & Sato, O. (2002). Chem. Commun. pp. 1578–1579.